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Enhancement of second harmonic generation in 
helical SF liquid crystals 

by MARTIN COPIC and IRENA DREVENSEK-OLENIK* 
Department of Physics and Institute J. Stefan, University of Ljubljana, 

61000 Ljubljana, Slovenia 

(Received 3 January 19Y6; accepted 21 Februury 1996) 

In a ferroelectric liquid crystal, a special type of phase-matching for optical second harmonic 
generation (SHG) is possible, where two counter-propagating fundamental waves create 
second harmonic waves at the edge of the selective reflection band. We compute the SHC 
intensity in such a situation and show that, at slight detuning from exact phase-matching, 
useful resonance enhancement can be obtained. A considerable amount of SHG also appears 
when the second harmonic frequency is in the reflection band, where the SHG wave is 
non-propagating. 

1. Introduction 
Optical second harmonic generation (SHG) in the 

ferroelectric SE phase of liquid crystals is interesting 
both from the fundamental and applications points of 
view. The molecular hyperpolarizability of some mat- 
erials forming the S? phase is relatively large. If well 
oriented samples which are thick enough and which 
allow phase matching of the fundamental and second 
harmonic wave can be prepared, such systems are 
promising for efficient practical SHG devices. 

In the equilibrium bulk phase, the S z  liquid crystal 
has a superstructure in which the molecular tilt and the 
spontaneous electrical polarization form a helix in the 
direction of the normal to the smectic layers. In most 
SHG experiments to date, the helix was unwound by 
the application of an external field [ 1-71. In this case, 
the unwound S: sample has a macroscopic C, symmetry 
and phase matching is achieved, as in ordinary crystals, 
with the use of birefringence. 

The inhomogeneous helical structure, however, has 
some interesting optical properties which can be 
exploited for SHG phase matching. The dispersion rela- 
tion for light propagating along the direction of the 
helix has two branches which are at most frequencies 
separated by approximately twice the wave-vector of the 
helix, 2q. In a small frequency interval, one of the 
branches has a gap in which the corresponding light 
wave cannot propagate, but is Brdgg reflected on the 
helical superstructure [ 81. This gives rise to the charac- 
teristic colouration of helical phases. The phase-match- 
ing condition for SHG can include a multiple of q 

*Author for correspondence. 

providing several new possibilities. The inhomogeneous 
phase-matching conditions for third harmonic genera- 
tion in a chiral nematic liquid crystal have been analysed 
by Shelton and Shen C9-111 and for SHG in a twisted 
nematic under an external electric field by Saha [ 123. 

2. Present work 
In  this paper we analyse a particularly interesting case 

of phase-matched SHG in the helical S: phase where 
two fundamental waves propagate in opposite directions 
along the helical axis and the doubled frequency is near 
or in the reflection band. The induced polarization can 
generate the non-propagating wave in the gap. This 
phenomenon is very interesting, as this is a rare case 
where it is possible to study waves emitted by sources 
within the forbidden gap. 

Experimentally, an enhancement of SHG in the vicin- 
ity of the gap has recently been observed by Kajikawa 
et al. [13] and Furukawa et al. [14]. They have sug- 
gested that the observed effect is analogous to the 
situation in distributed feedback laser resonators. That 
some enhancement of the harmonic generation could 
occur in a twisted nematic liquid crystal when the 
harmonic frequency is near the reflection band edge, has 
also been theoretically suggested by Belyakov [ 15, 161. 
A satisfactory analysis of the effect, however, has been 
lacking. 

The propagation of light along the helical axis (z-axis) 
in the S z  phase is best described on the basis of two 
circular polarizations. The eigenwaves have the form 

El = (a: exp [i(k, + q)z],u; exp [i(k, - y)z])exp(-iwt) 
(1) 
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The mode index has the values I = 1,. . . ,4. The af are 
normalized components of the Ith eigenwave polariza- 
tions and are not orthogonal. The wavenumbers kL and 
frequency are connected by the dispersion relation 

Here E is the average value of the dielectric tensor for 
propagation in the z direction, and CI is the dielectric 
anisotropy in the plane of the smectic layers: 

( E ~ ~  ~ E ,  , sin2 0 
x =  (3)  2(cl, sin'd + c33 cos2 ( I )  

0 is the tilt angle and qi are the principal values or  the 
approximately uniaxial dielectric tensor. The dispersion 
relation (2 ) is shown in figure 1 .  

Let us consider a slab of S z  material with thickness 
L and two counter-propagating waves along the z-axis 
at thc fundamental frequency o with wavenumbers 
k;" = ~ k y  on the branches 1 and 2 in figure 1. When 
CL, = w + / 2  or 0 ~ - / 2 ,  we have the SHG wavenumber 
k'" - 

- 0. We have omitted the possible material disper- 
sion of E ,  which would cause the phase-matching 
to  appear at (11 slightly less than w k / 2 .  When 
(21- < 2w < w ,  , the SHG wave falls in the non-propagat- 
ing gap, where the wavenumber is imaginary, and it is 
a very interesting question what the resulting SHG 
signal is. 

In order to compute the second harmonic wave which 
emanates from both surfaces of the S y  slab, it is necessary 
to solve the wave equation in the slab with non-linear 
polarization as the source term. The non-linear polariza- 
tion contains terms with the spatial dependence given 
by exp ( imp),  m = -t 1, -t 3. For SHG in the chosen case, 
only the terms with the first circular component given 

k 

t'igure I .  The dispersion relation for light waves propagating 
along the z axis in a twisted S: liquid crystal. 

by F cxp (iyz) and the second one by F exp (- iqz) are 
effective. The amplitudes F C  of the non-linear polari7a- 
tioii at 20 are determined by the amplitudes of the two 
fundamental waves and the non-linear susceptibility 
components of the S: phase. 

We will neglect the depletion of the fundamental 
beams due to the harmonic generation. The wave 
equation for the SHG wave is 

( 4 )  

The usual approximation of the slow amplitude vari- 
ation, reducing the second order equations to first order, 
is not applicable in the present case where k:: = 0. So 
the solution has to be sought in the form 

4 

E$,,(-?) = 1 B,a: exp [i(k:" f 4 ) ~ ]  + C f  exp(fiqz) 
1 = 1  

( 5 )  

The first term i s  a sum of eigenwaves ( 1 )  and the last is 
a particular solution of equation (4) with the constants 
C' given by 

The denominator of the expression is zero for the 
frequencies CII? at the band edge. so the coefficients are 
singular at least at one of the edges. 

In the free space to the left and right o f  the slab we 
have two outgoing waves with amplitudes DL,L, 
R, L standing for left and right side of the slab. We find 
them and the coefficients B, by requiring that E and H 
are continuous at the boundaries. In general it is not 
possible to reduce the resulting system of 8 equations, 
because the eigenpolarizations of waves in the S z  phase 
are not orthogonal. However, of the four amplitudes B, 
in equation ( 5 ) ,  only the two belonging to branches 
1 and 2 of the dispersion relation. for which 
k:" = ~ kz"' N 0 are nearly phase-matched, so they will 
give a dominant contribution to the SHG signal. Of the 
outgoing waves, only one circularly polarized wave on 
each side is significant. Its polarization is such that i t  
would be Bragg reflected on normal incidence on the 
S: slab, as would be expected. So we are left with only 
four equations for B,,  B,, DZ and DL . 

It is convenient to introduce two small quantities: 
a = (X/C)'/~ = (An/n)'"2 and 1' = 1 - (kt'" + q)'c'/( 4m'c). In 
a typical S z  liquid crystal, LI is close to 0.1 and with 2w 
in the vicinity of the gap, f is of the same magnitude or 
smaller. The outgoing amplitude can be expressed to the 
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order u4 and t4 in the form 

k4"L 
0; = -isin- 

2 

u2 - t2 [ u2 exp (- ik:"L/2) + t2 cxp (ik:"L/2) 
(C' - c-)  

(C' + c-]  a2 + t2 
+ izexp(-ik:"L/2) - t2exp(ik:"L/2) 

( 7 )  
The expression for DL is similar. The first term in the 
square bracket gives a peak SHG amplitude at the upper 
edge of the reflection band w, and the second at the 
lower edge w -  . 

Let us take C- = -C+. This will hold if F -  = -F+, 
a condition that can be met with a proper choice of the 
polarizations of the two wavcs at the fundamental 
frequency. Then we get only one peak around 2w = w+ . 
Let us write 2 0  = w+(  1 + r).  r measures the amount of 
dctuning from the perfectly phase-matched condition 
k:" = 0. In terms of a and r, 

Taking into account equations ( 6 )  and (7), the SHG 
intensity emitted to the right is given, for positive r, 
approximately by 

c2IF+I2 (a2 - t2)2( 1 - cosk!"l) 
8Ew2r2 a4 + t4 + 2a2t2 cos k:"L P ( L )  = ~ (9)  

12"(L), shown in figure 2, is a periodic function corres- 
ponding to the Maker fringes in the case of homogeneous 
crystals. It has, however, some interesting properties. At 

0 500 1000 1500 2000 

L ko 

Figure 2. The dependence of the SHG intensity on thickness 
for three values of the detuning of second harmonic 
frequency from the edge of the selective reflection band. 
a = 0.1. 

the maxima, which occur when k:"L = (2N + 1 ) q  where 
N = 0,1,. . . , its value is c21F+ 12/(4Zw2r2). As shown in 
figure 2, for small detuning r, this value can be consider- 
ably larger than in the perfectly phase-matched case 
with the same L, where we have I:r,(L)=(1/4)L21F'12 
and the ratio of the first peak of equation (9) and I::,, 
at the same L is 

Compare this to the usual case of a homogeneous 
crystal, where the first maximum of the Maker fringes 
is always smaller than the phase matched SHG intensity 
at the same wavelength by a factor 4/z2. The enhance- 
ment of 1'" is similar to light amplification in distributed 
feedback lasers, although it occurs at small detuning 
from the reflection band edge on the side where light 
waves can propagate. 

In a real material, u can be about 0.1. In the maximum, 
r and L,,, are connected through k:"Lax=7c: and 
equation (8 ) .  If we take L to be 600 pitch lengths or 
about 0.3mm for green doubled light, which is a some- 
what optimistic value for a well oriented sample, we get 
r = 0.002. Then the enhancement ratio (10) is 2.4, a value 
that could be quite useful. 

When 2w is in the reflection band, that is when r < 0, 
kf" is imaginary and the double light cannot propagate 
in the S l  liquid crystal. So it is an interesting question 
what happens to 12". Again for the case F -  = -F' ,  we 
can derive from equation ( 7 )  a simple approximate 
expression 

Here ic= -ik?. This expression is also shown in 
figure 2. The SHG intensity in the gap saturates at a 
value which one would get approximately in a phase- 
matched situation with the material thickness l / ~ ,  as 
would be expected. 

In a sample of S z  material, it is often more convenient 
to scan the pitch vector q by changing the temperature 
than to vary the sample thickncss. In our notation, this 
is equivalent to changing the detuning parameter r. 
Figure 3 shows the dependence of 12"(L) at fixed L as a 
function of r at several choices of the components of the 
non-linear polarization F'. With F -  = - F +  we get a 
peak at  the upper gap edge w, , with F = F + a peak 
at u-, and with F -  = 0 (or F +  = 0) two peaks at both 
edges, with somewhat larger intensity in the gap, a 
consequence of the interference of the two terms in 
equation (7). 

The peak in SHG intensity obtained by temperature 
tuning q through the reflection band has already been 
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3 N - 

L k,=100 

* . * * ‘ n * a .  .-. 
-0.10 -0.05 0.00 0.05 0.10 

r 
Figure 3. The dependence of the SHG intensity on the detun- 

ing parameter at fixed thickness of the sample. The three 
curves are for different choices of the components of the 
non-linear polarization: full line-F+ = - F- ,  dotted 
line-F+ = F-,  dashed line-F- = 0. a = 0.1. 

observed by Kajikawa et al. [13] and Furukawa et  al. 
[14]. Unfortunately, the authors did not use two 
counter-propagating fundamental waves, so their result 
is probably due to interaction of the incoming wave and 
a weaker wave that is reflected from the back surface of 
the sample. 

For applications, materials with large optical aniso- 
tropy and large tilt, and a correspondingly larger value 
of the parameter a, might be found. A value of a=0.2 
seems quite possible, giving an enhancement ratio of 10 
for a 300pm thick sample. It is also much easier to 
prepare relatively thick samples with homeotropically 
twisted geometry, than with a planar geometry, with an 
electric field to unwind the helix. Well oriented homeo- 
tropic samples of a few hundred microns thickness can 

usually be prepared without much trouble, whereas in 
the planar geometry problems start at 10 pm. Together 
with the high hyperpolarizability coefficients that can be 
obtained with organic materials, S z  liquid crystals could 
be very efficient systems for practical SHG applications. 
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